AFRL-VA-WP-TR-1999-3069

AUTOMATED STRUCTURAL
OPTIMIZATION SYSTEM (ASTROS)
DAMAGE TOLERANCE MODULE

VOLUMEI1 -- FINAL REPORT

L. WANG
S.N. ATLURI

KNOWLEDGE SYSTEMS, INC.
426 MESA VERDE AVENUE
PALMDALE, CA 93551

FEBRUARY 1999

FINAL REPORT FOR 09/30/1996 — 09/30/1998

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE II REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20000407 064

AIR VEHICLES DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE OH 45433-7542

pTIC QUALITY TgPRCTED &




NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE
THE UNITED STATES GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER
OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS
OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED
INVENTION THAT MAY BR RELATED TO THEM.

THIS REPORT IS RELEASEABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO
THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED
FOR PUBLICATION.

VICTORIA A. TISCHLER NELSON D. WOLF, Chief /)
Aerospace Engineer Design & Analysis Branch
Design and Analysis Branch Structures Division

/ ,
JOYEPH M. MANTER, Chief
Structures Division
Air Vehicles Directorate‘

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED
FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER
EMPLOYED BY YOUR ORGANIZATION, PLEASE NOTIFY AFRL/VASD
BLDG 146, 2210 8TH STREET, WRIGHT-PATTERSON AFB OH 45433-7531
TO HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN
IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL
OBLIGATIONS, OR NOTICE ON A SPECIFIED DOCUMENT.




Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0168

Public reporting burden for this collection of inf fon is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the colection of infs ion. Send garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headgquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20603.

1. AGENCY USE ONLY /Leave blank/ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FEBRUARY 1999 FINAL REPORT FOR 09/30/1996 - 09/30/1998
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
AUTOMATED STRUCTURAL OPTIMIZATION SYSTEM (ASTROS) DAMAGE C F33615-96-C-3215
TOLERANCE MODULE PE 65502
PR 3005

6. AUTHOR(S) TA 41

L. WANG WU 91

S.N. ATLURI

7. PERFORMING ORGANIZATION NAME(S] AND ADDRESS(ES) 3. PERFORMING ORGANIZATION
KNOWLEDGE SYSTEMS, INC. REPORT NUMBER

426 MESA VERDE AVENUE

PALMDALE, CA 93551

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPONSORING/MONITCRING.

AIR VEHICLES DIRECTORATE AGENCY REPORT NUMBER

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND AFRL-VA-WP-TR-1999-3069
WRIGHT-PATTERSON AFB, OH 45433-7542

POC: VICTORIA A. TISCHLER, AFRL/VASD, 937-255-9729

11. SUPPLEMENTARY NOTES

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I1 REPORT.

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

This report was developed under SBIR contract.

This report is part of the documentation that describes the complete development of an SBIR Phase II effort titled, "An
ASTROS Compatible Computational Strategy for Evaluating the Aeroelastic Response, Buckling, and Integrity of Composite
A/C". This report is one of three manuals that comprise the final documentation. The remaining reports consist of a User's
Manual, Volume II, and an Interface Design Document, Volume IIL

The Automated STRuctural Optimization System (ASTROS) is a multidisciplinary computer program for the preliminary
design of aircraft and spacecraft structures. It integrates structures, aerodynamics, controls and optimization to make possible

interdisciplinary design.

This report describes the work performed to enhance the capability of ASTROS to perform preliminary design optimization of
metallic and composite material aircraft, based on damage tolerance requirements. It defines the SBIR technical objectives and
gives a technical description of the Damage Tolerance models. The Automated global-local analyzer, the Buckling analysis of
a composite with/without delamination, the Finite Element Alternating Method, Fatigue crack growth and optimization are also
discussed. Finally a short description of interfacing with ASTROS is given.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Damage Tolerance Models, Master Element Approach, Automated Global-local Analyzer, 62

Preliminary Design Optimization, Buckling Analysis, Composites, Delamination, Finite Element |16. PRICE CODE
Alternating Method, Fatigue Crack Growth

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF TH!S PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

Standard Form 298 (sRev. 2-89) (EG)
Prescribed hy ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94




TABLE OF CONTENTS

LIST OF FIGURES v
CHAPTER 1
I Introduction _ : 1
.1 Introduction . . . . . . . . . i i i e e e e e e e 1

1.2 SBIR Technical Objectives . . . . . . ... . . i it 3

II Technical Description 7
2.1 Master-elementapproach . . . . . ... ... ... ... Lo 7
22 Damagetolerancemodels . . . . . . .. ... L oo 8
22.1 2Dthroughwallcrack . . ... ... ... .. ... .. ... .. .. ... 8

2.2.2 2D through wall cracks emanating fromahole . .. ... ... ... ... 9

223 Surfaceflaw . . . .. ... 10

2.24 Corner cracks emanating fromahole ... ... .. ... ... ...... 11

2.2.5 2Dthroughwallcurvedcrack . ... ... ... ... .. ... ...... 11

2.2.6 2D through wall curved cracks emanating fromahole . . ... ... ... 12

2.277 Discrete sourcedamage . . . . . . . ... u oo e e e e 13

228 BUCKDEL . .. ... ... ittt 14

2.3 Automated global-local analyzer . . . . . .. ... ... .. ... ... ... .. 14
2.3.1 Hierarchical analysis methodology . . . . . ... .. ... ... ...... 15

2.3.2 Geometry Modeling and Mesh Generation. . . . ... ... ........ 16

2.3.3 Analysis Model and Feature Modeling . . . . ... ... .......... 21

2.3.4 Hierarchical Analysis Based on Feature Modeling . . .. ... ... ... 22

2.4 Buckling Analysis of a Composite with/without delamination ... . . . . ... ... 25
2.5 Finite Element AlternatingMethod . . . . . . ... .. ... ... ......... 29
2.5.1 Superposition Principle and the Alternating Method . . . . . . . ... ... 29

2.5.2 Convergence of the Alternating Method . . . . . .. ... ... ...... 32

2.53 Summaryof FEAMProcedure . . . . ... ... ... ... . ...... 34

2.54 2DFEAM forstraightcracks. . . . . ... ... . ... ... ...... 35

2.5.5 3D FEAM for surface flaws and cornercracks . . . . ... ... ... ... 37

2.5.6 Distributed-Dislocation-base FEAM forcurved cracks . . . . . ... ... 44

2.6 Fatiguecrackgrowth . . ... .. ... ... . ... 44
277 Optimization . . . . . . . .. . e e e e e 47
2.8 Imterfacingwith ASTROS . . . . . . ... .. ... .. ... o 48
2.8.1 MAPOL . . . . .. e e 49

2.82 DATABASE . . .. . . . . e 49

2.83 TCL . . . . . e e e 49

iii




III Summary of Phase II Accomplishments

REFERENCES

iv

52

54



1.1
1.2

1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18

2.19
2.20
221

LIST OF FIGURES

Central Crack and Broken Stiffener in a Panel

Failed Lower Wing Panel of a U.S. Air Force C-141B Due to the Growth of a
Surface Flaw

Hole in the Upper (Compression) Skin of a Wing

Delamination Due to Impact of a Laminated Composite

A through wall crack

Two cracks emanating from a hole

A surface flaw of the shape of semi-ellipse/circle

Two corner cracks emanating from a hole

A curved crack

The curved cracks emanating from a rivet hole

A lead crack in a stiffened panel with/without a broken central stiffener
Buckling of a composite panel with elliptical/circular delamination
A design optimization model

A Global Analysis

The Isolated Skin (Local Model)

Damage in the Upper (Compression) Skin of a Wing
Superposition Principle for Finite Element Alternating Method

Subtract APrgpy from Pyya to Obtain the Solution for Prgs which has Homo-
geneous Boundary Condition on I"

Convergence Criterion
Superposition Principle Used in the Finite Element Alternating Method
Flow Chart of the Finite Element Alternating Method

The Finite Element Mesh When a) The EDI Method is Used; b) The Finite
Element Alternating Method is Used

U.S. Air Force C-141B
Cut-Out Lower Wing Panel from the C-141B Showing Weep Holes
Cross-Section of Failed Lower Wing Panel of the C-141B

10
11
12
13
13
14
16
17
17
26
30

33
35
36
38

39
43
43
44




2.22 Integration of damage tolerance module with ASTROS

vi

51



FOREWORD

This is the final report on the work performed by Knowledge Systems, Inc. on the U.S. Air Force
Contract F33615-96-C-3215, ”An ASTROS Compatible Strategy for Evaluating the Aeroelastic
Response, Buckling and Integrity of Composite A/C”. This report contains 3 parts: 1) "ASTROS
Damage Tolerance Module: Final Report”; 2) ”ASTROS Damage Tolerance Module: Interface
Design Document”; and 3) ”ASTROS Damage Tolerance Module: User's Manual”.

This report details the work performed to enhance the capability of ASTROS to perform prelim-
inary design optimization of metallic and composite material aircraft, based on damage tolerance
requirements. The customized damage tolerance models that have been implemented in ASTROS,

at present, are:

1.

Discrete Source Damage Model: A lead crack in a stiffened panel with/without the presence
of a central broken stiffener;

BuckDel model: Buckling of a composite panel in the presence of a delamination;

3. Straight Crack Model: A panel with a central crack;

Rivet Hole Crack Model: One (or two) crack(s) emanating from one side (or both sides) of
a rivet hole;

5. Curved Crack Model: A panel with a curved crack;

6. Rivet Hole Curved Crack Model: One (or two) curved crack(s) emanating from one side (or

both sides) of a rivet hole;

Surface Crack Model: One centered surface crack in a plate;

8. Rivet Hole Corner Crack Model: Two corner cracks emanating from both the sides of a

straight-shank rivet hole.

The authors acknowledge the contributions of D.S. Pipkins, PE. O' Donoghue, K. O' Sullivan,

and H. Kawai to various parts of this report.
It is a pleasure to acknowledge the constant support, constructive criticism, and valuable in-
sights, provided by Drs. V.A. Tischler and V.B. Venkayya of AFRL during the course of this

project.
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CHAPTERI1
INTRODUCTION

1.1 Introduction

In addition to requirements such as strength, stiffness, and aeroelastic response it is necessary to
- design both metallic and composite aircraft structures to withstand the effects of damage. By doing
s0, safe, economical fleets with high operational readiness can be insured. The importance of safety
and operational readiness to profitability and competitiveness in a commercial aviation setting
and national defense in a military one is apparent. To insure that metallic aircraft structures are
designed and maintained to withstand the effects of damage, the Federal Aviation Administration
(FAA) and United States Air Force (USAF) have established specific guidelines which must be
followed. The FAA requires commercial transport aircraft certified under part 25 of the Federal
Aviation Regulations (FAR) to meet certain Damage Tolerance Requirements (DTR). Similarly,
the USAF has specified a set of DTR for metallic structures which are described in detail in MIL-
STD-1530A. For composite structures, the FAA does not have formal requirements for certification
at this time. The Air Force, on the other hand, has specified a set of DTR for composite structures
in AFGS-87221A. The DTR, as set forth by both the FAA and the Air Force, essentially state that:

e the residual strength of an airframe structural component shall not drop below that required
to sustain limit load, and

e that inspections must be scheduled to insure that the required level of residual strength is
maintained.

The primary means by which the DTR are satisfied by commercial and military airframe man-
ufacturers and maintenance organizations is through the performance of a Damage Tolerance
Assessment (DTA). The DTA involves the development of damage growth curves and residual
strength diagrams for individual structural components of an airframe. This allows the residual
strength as a function of aircraft usage to be determined. With this information, manufacturers
can design components which minimize the evolution and growth of damage and its effect on the
integrity of the aircraft structure. Further, appropriate inspection intervals can be specified which
insure that the structural integrity of the aircraft will be maintained through out its life.

At present, there is no other software which integrates damage tolerance with the other disci-
plines (i.e. strength, stiffness, aeroelastic response, etc.) which impact the design of an aircraft
structure. As a result, the design of an aircraft structure which satisfies damage tolerance require-
ments in addition to those of other disciplines, is presently accomplished via a manual “cut and
try” procedure. This type of design process is time consuming and therefore very costly [Nees




(1995)]. To address this deficiency in existing software, this SBIR project is implementing a dam-
age tolerance module into the multidisciplinary analysis and design software, ASTROS.

Phase I of this SBIR project has addressed the damage tolerance analysis of aircraft structures
made of laminated composites. The damage considered was in the form of a delamination between
lamina in a stiffened panel. The Phase I effort accomplished the following.

¢ Damage tolerance software applicable to laminated composites, called BUCKDEL, was de-
veloped. The BUCKDEL software performs a geometrically nonlinear analysis of stiffened
laminated composite plates with and without delaminations. BUCKDEL allows the user to
perform: a linear static solution; a linear buckling (eigenvalue) analysis; and a nonlinear
post-buckling analysis through both limit and bifurcation points. BUCKDEL also calculates
the pointwise energy release rates around a delamination front using an Equivalent Domain
Integral (EDI) technique. The energy release rates can be used to predict the growth and
onset of unstable propagation of a delamination.

e The feasibility of using a global-local approach to link an ASTROS finite element analysis
(global) with a local damage analysis (such as that performed by BUCKDEL) was investi-
gated. This global-local approach was found to be workable, due in large part to the AS-
TROS system architecture which allows the user to introduce special purpose modules by
making use of the SYSGEN program which is provided with ASTROS.

Based on the Phase I results, the implementation of a damage tolerance module into ASTROS
which accounts for typical damage in both composite and metallic structure is feasible. This report
describes the Phase II effort in the implementation of the damage tolerance module in ASTROS.
In addition to this report, the users' manual and the interface design document for the damage
tolerance module are prepared as part of the documentation for this project.

In phase II of this SBIR project, customized Damage Tolerance Models (DT model) are im-
plemented in ASTROS. Customized damage tolerance models are idealized damage scenarios that
are to be considered for damage tolerance requirements. Localized damage, such as a crack or
delamination, is very small in size when compared to the finite element model used in preliminary
design optimization. Therefore, these damages are not modeled explicitly in the FEM model for
preliminary design optimization. The damage tolerance module automatically generates detailed
computational models for damage tolerance assessment, using a few parameters for the definition
of the DT models via bulk data cards introduced by the damage tolerance module. This feature
of the damage tolerance module greatly simplifies the model preparation effort for the user in the
preliminary design phase. The customized DT models that have been implemented in ASTROS at
present are:

e Discrete Source Damage Model: a lead crack in a stiffened panel with/without the presence
of a broken central stiffener [Fig. 2.7]

e BuckDel Model: buckling of a composite panel in the presence of a delamination [Fig. 2.8]

e Straight Crack Model: a panel with a centered crack [Fig. 2.1]
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e Rivet Hole Crack model: one (or two) crack(s) emanating from one side (or both sides) of a
rivet hole [Fig. 2.2]
e Curved Crack model: a panel with a curved crack [Fig. 2.5]

e Rivet Hole Curved Crack model: one (or two) curved crack(s) emanating from one side (or
both sides) of a rivet hole [Fig. 2.6]

e Surface crack model: one centered surface crack in a plate [Fig. 2.3]

¢ Rivet Hole Corner Crack model: two corner cracks emanating from both side of a straight-
shank rivet hole. [Fig. 2.4]

A master element approach has been implemented in ASTROS to access these damage tol-
erance models. Using these models the user can evaluate fracture parameters or perform fatigue
crack growth analyses. Damage tolerance based constraints for the design optimization can then
be used in the preliminary design optimization.

1.2 SBIR Technical Objectives

The objective of this SBIR project is to develop damage tolerance software as an analysis mod-
ule in the multidisciplinary analysis and design software, ASTROS. The software uses state of
the art, computationally efficient algorithms for determining the residual strength and life [Atluri
(1995)] of metallic and composite structures with damage. It enhances the existing capabilities
of ASTROS by allowing constraints based on damage tolerance requirements to be considered
simultaneously with those based on strength, stiffness, aeroelastic response, etc. during design
optimization. Included in potential commercial applications of such a capability are industries
involved in the design of aircraft structures, automobiles, bridges and buildings.

ASTROS is well suited for modeling the global strength, stiffness, and aeroelastic response of
an undamaged, stiffened structure. However, it presently does not have the capability to account for
local damage such as cracks, delaminations, and penetration holes. Therefore, this SBIR project 1s
to develop a damage tolerance module for ASTROS. The damage tolerance module

e utilizes the existing capabilities of ASTROS for performing the modeling of the structure;

e generates load spectra in terms of ASTROS load cases;

e develops customized damage tolerance modules to model local damages in metallic and
composite materials;

e has a seamless interface to the other modules in ASTROS, via an engineering database and
high level programming language (MAPOL).

e defines new bulk data entries, relational schema and error messages needed to provide a
"consistent interface as the other modules in ASTROS.

The damage scenarios considered in the damage tolerance module are:
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Figure 1.1: Central Crack and Broken Stiffener in a Panel

e single or multiple skin cracks (Widespread Fatigue Damage) in a stiffened structure, in-
cluding the effect of broken stiffeners (Fig. 1.1) [tensile loading, metallic and composite
materials];

e skin crack turning at stiffeners [tensile loading, metallic and composite materials];

e single or multiple part elliptical/circular surface flaws at holes or other stress raisers (Fig. 1.2)
[tensile loading; metallic materials]

® holes (Fig. 1.3) [compressive loading, metallic and composite materials]; and

e delaminations (Fig. 1.4)[compressive loading, composite materials].

For metallic or composite aircraft structures loaded in tension, the damage of principal interest
during design is usually in the form of cracks normal to the direction of principal tension. These
cracks typically occur over time due to fatigue or suddenly due to an event such as an uncon-
tained failure of a rotating engine component or battle damage. A crack arising suddenly due to a
catastrophic event is an example of discrete source damage (DSD). In reality, DSD in a structure
loaded in tension such as a fuselage or lower wing would be in the form of an irregular shaped
hole. However, since a crack of length '@’ is more critical than a hole of diameter 'a', the crack
representation of DSD represents a worst case scenario. Therefore, for reasons of conservatism
and practicality (both experimental and analytical) the crack is used in the certification of primary
structural elements loaded in tension. Residual strength and life calculations for structures con-
taining cracks and loaded in tension will be based on Linear Elastic Fracture Mechanics (LEFM).
Thus, the parts of the damage tolerance modules which analyze cracked structure will compute
stress intensity factors and their sensitivities to changes in the design variables. These values can
then be used to evaluate constraints based on residual strength requirements. For constraints based
on residual life (fatigue) requirements, the computed stress intensity factors will be used in crack
growth equations to determine the time required for a crack or cracks to grow to a critical size. The




Figure 1.2: Failed Lower Wing Panel of a U.S. Air Force C-141B Due to the Growth of a Surface
Flaw
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Figure 1.3: Hole in the Upper (Compression) Skin of a Wing




Figure 1.4: Delamination Due to Impact of a Laminated Composite

critical size is determined from a residual strength requirement such as that requiring the structure
to be able to sustain limit load at any time in its life.

For metallic or composite aircraft structures loaded in compression, the primary concern is with
DSD in the form of a hole or crack parallel to the direction of principal compression. For laminated
composites, delaminations between lamina are also of concern. Delaminations can result from
excessive interlaminar shear stresses or through-the-thickness tensile stresses at holes, free edges,
section changes, or in bonded joints; panel buckling; and low velocity impact. The modeling of
delaminations in laminated composites was addressed in Phase I and resulted in the development of
the BUCKDEL software. The residual strength of structures loaded in compression will be based
on the buckling and post-buckling behavior of the structure. For laminated composites containing
delaminations, the pointwise energy release rate around the delamination front will also be used in
the residual strength prediction.

The motivation for modeling DSD in a structure loaded in compression in the form of a hole
or crack parallel to the direction of principal compression is as follows. For a stiffened structure,
the buckling load is expected to vary significantly with the size, shape (i.e. circular or elliptical),
and location (i.e. distance from the wing tip) of the hole. Some results reported in the literature
[Vellaichamy et. al (1990), Nemeth (1990), and Britt (1994)] indicate, as is to be expected, that for
an elliptical hole with the major axis along the direction of compression, the initial buckling load
is lower than that for a circular hole of the same area. Similarly, if a panel is subject to pure shear
in the x-y plane, the shear buckling load will be minimum when the major axis of the ellipse is at
45 degrees to the x axis. The buckling load will decrease with an increase in the aspect ratio of the
ellipse. The most severe case being in the limit when the ellipse degenerates into a crack (with the
crack axis along the direction parallel to the direction of compression). Based upon this discussion,
it is anticipated that the worst case DSD scenario for primary structure loaded in compression will
be a crack oriented such that its axis is parallel to the direction of maximum compressive stress.




CHAPTER II
TECHNICAL DESCRIPTION

This chapter describes the technical details in the damage tolerance module in ASTROS. The
damage tolerance module in ASTROS uses a master-element approach to extract loading condi-
tions for the damage tolerance models. An automated global-local analyzer is used to perform
hierarchical analysis of discrete source damage. An integrated geometry modeler and mesh gen-
erator is used to construct damage tolerance models using a few user specified parameters. Finite
element alternating methods are used for the evaluations of stress intensity factors for straight or
curved cracks, 3D cracks of elliptical/circular shape. BUCKDEL is used for the evaluation of
the buckling load of a composite panel with delamination. A load spectrum module is used to
generate fatigue loading history in terms of ASTROS loading cases. Details of these techniques
are described in this chapter. The reader is assumed to be familiar with ASTROS (Automated
STRuctural Optimization System).

2.1 Master-element approach

A master-element approach is used to enable the automatic generation of loading conditions for
damage tolerance models. Localized damages, such as a crack or delamination, are very small in
size when compared to the overall finite element model used in the preliminary design optimiza-
tion. Therefore, these damages are not modeled explicitly using FEM mesh during the preliminary
design optimization. For each of the damages specified in the preliminary design model, a separate
damage tolerance model is generated for damage tolerance assessment.

A master element is the element in the Preliminary Design model (PD model) that contains
the damage under consideration. Since it is small in size, the damage's effect on the load flow
in the PD model is practically negligible. Therefore, the loading condition in the master element
of the PD model (without damage) represents the loading condition for the panel with a damage.
Based on this assumption the damage tolerance module extracts the loading information from the
master element from the engineering database after the static mechanical analysis, and generates
the Damage Tolerance model (DT model) for damage tolerance assessment.

The damage tolerance module automatically generates detailed computational models for dam-
age tolerance assessment, using a few parameters for the definition of the DT models via bulk data
cards introduced by the damage tolerance module. This feature of the damage tolerance module
greatly simplifies the model preparation effort for the user in the preliminary design phase.

There are a number of advantages in using the master-element approach. The master-element
approach, together with the high level of abstraction of the damage tolerance model, makes it




possible for the development of interchangeable modules for performing the damage tolerance
assessment for the same damage using different methods.

The master-element approach allows the damage tolerance module to treat different types of
damage in a similar fashion.

When the master-element approach is used, the damage tolerance analysis imposes no addi-
tional requirements on the preparation of the PD model. A single PD model can be used to assess
multiple damage scenarios with a single or multiple damage.

However, the master-element approach can not be used when the size of a damage is so large
that the loading conditions around the damage are altered significantly due to its presence. This
may occur in the analyses of the structural details where the size of the damage is not small when
compared to the structural details in the FEM under consideration. In such a case the effect of the
damage on the load distribution must be taken into account in order to assess the capacity of the
damage tolerance of the structure.

2.2 Damage tolerance models

Although the structural details in the vicinity of a crack have significant influence on the stress
intensity factors of the crack, such details are to be determined in the later stage of design. There-
fore, accurate modeling of structural details in the vicinity of a crack for specific location is not
necessary in the phase of preliminary design. However, it is necessary to model the “average” struc-
tural behaviors so that the overall damage tolerance capability of the structure can be achieved in
preliminary design, where the interaction between multiple disciplines requires intensive computa-
tion. Once the preliminary design ensures that the structure has adequate overall damage tolerance
capability, the detailed design (which does not involves multiple disciplines) can easily meet the
damage tolerance requirement by changing the structural details near the critical locations.

This section describes the customized damage tolerance models that have been implemented
into ASTROS.

2.2.1 2D through wall crack

In this damage model [see Fig. 2.11, a small crack is located at the center of a panel. When the
dimension of the panel is not explicitly specified by the user, the damage tolerance module will
calculate the dimension based on the size of the master element. A square panel will be generated
with an area equal to that of the master element. A coordinate transformation is performed by the
damage tolerance module so that the crack is on the x-axis in the damage tolerance model as seen
in Fig. 2.1. The loading condition is taken from the corresponding master element. A 2D plane
stress analysis is performed. The beta factors for mode I and mode II SIFs are defined as:

By = — By = —1_

OyV/Ta’ Oxyv/Ta
where Oy and Gyy are the normal and shear stresses in the master element in the crack coordinate
system.




Figure 2.1: A through wall crack

The user can chose from one of the following methods to perform the fracture analysis. They
are i) 2D finite element alternating method (FEAM); ii) using user supplied beta factors; iii) using
infinite body solution. In practice, one can use the 2D FEAM to calculate the beta factor; then, use
the beta factor in the subsequent analyses.

2.2.2 2D through wall cracks emanating from a hole

In this damage model [see Fig. 2.2], one (or two) small crack(s) emanates from a rivet hole at
the center of a panel. When the dimension of the panel is not explicitly specified by the user, the
damage tolerance module will calculate the dimension based on the size of the master element. A
square panel will be generated with an area equal to that of the master element. A coordinate trans-
formation is performed by the damage tolerance module so that the cracks are on the x-axis in the
damage tolerance model as seen in Fig. 2.2. The loading condition is taken from the corresponding
master element. A 2D plane stress analysis is performed. The beta factors for mode I and mode I
SIFs are defined as:

where G, and Oy, are the normal and shear stresses in the master element in the crack coordinate
system; a = r+(a; + a3)/2.

Figure 2.2: Two cracks emanating from a hole




Figure 2.3: A surface flaw of the shape of semi-ellipse/circle

When there are two cracks emanating from the hole, these two cracks must be aligned in a line
passing through the center of the hole.

The user can choose from one of the following methods to perform the fracture analysis. They
are i) 2D finite element alternating method (FEAM); ii) using user supplied beta factors; iii) using
infinite body solution. In practice, one can use the 2D FEAM to calculate the beta factor; then, use
the beta factor in the subsequent analyses.

2.2.3 Surface flaw

In this damage model [see Fig. 2.3], a surface flaw is located at the center of a panel. The surface
flaw is of a half elliptical/circular shape. The major (or the minor) axis aligns with the surface;
while the other axis is in the thickness direction. When the length and width of the panel are not
explicitly specified by the user, the damage tolerance module will calculate the dimensions based
on the size of the master element. A square panel will be generated with area equal to that of the
master element. If the user does not specify the thickness explicitly, the thickness of the master
element is used. A coordinate transformation is performed by the damage tolerance module so that
the surface flaw is in the x-z plane in the damage tolerance model as seen in Fig. 2.3. The loading
condition is taken from the corresponding master element. The beta factors for mode I, mode 11,
and mode III SIFs are defined as:

Kj .Y _ Kmy

oyv/ma’ P2= OxyVTa *7 Gyv/na

where o), and oy, are the normal and shear stresses in the master element in the crack coordinate
system; @ = min(a, b).

The user can choose from one of the following methods to perform the fracture analysis. They
are i) 3D finite element alternating method (FEAM); ii) using user supplied beta factors. In prac-
tice, one can use the 3D FEAM to calculate the beta factor; then, use the beta factor in the subse-
quent analyses.

Pr=
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Figure 2.4: Two corner cracks emanating from a hole

2.2.4 Corner cracks emanating from a hole

In this damage model [see Fig. 2.4], two corner cracks symmetrically emanate from a hole at the
center of a panel. The two corner cracks have the same size. They are of a quarter elliptical/circular
shape. The major (or the minor) axis aligns with the surface; while the other axis is in the thickness
direction along the surface of the hole. When the length and width of the panel are not explicitly
specified by the user, the damage tolerance module will calculate the dimension based on the size
of the master element. A square panel will be generated with an area equal to that of the master
element. If the user does not specify the thickness explicitly, the thickness of the master element
is used. A coordinate transformation is performed by the damage tolerance module so that the
surface flaw is in the x-z plane in the damage tolerance model as seen in Fig. 2.4. The loading
condition is taken from the corresponding master element. The beta factors for mode I, mode 11,
and mode III SIFs are defined as:

B, = K B, = Kir K
oyVna CuyV/TG OxyV/Ta

where G, and Gy, are the normal and shear stresses in the master element in the crack coordinate

Bs =

system; @ = min(a, b).

The user can choose from one of the following methods to perform the fracture analysis. They
are i) 3D finite element alternating method (FEAM); ii) using user supplied beta factors. In prac-
tice, one can use the 3D FEAM to calculate the beta factor; then, use the beta factor in the subse-
quent analyses.

2.2.5 2D through wall curved crack

In this damage model [see Fig. 2.5], a curved crack is located in a panel. The crack is defined
piecewise-linearly by a number of points on the crack. When the dimension of the panel is not
explicitly specified by the user, the damage tolerance module will calculate the dimension based
on the size of the master element. A square panel will be generated with an area equal to that of
the master element. The loading condition is taken from the corresponding master element. A 2D
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Figure 2.5: A curved crack

plane stress analysis is performed. The beta factors for mode I and mode II SIFs are defined as:

B, = K B, = Kir
' ovma’ 27 6yyna

where Oy and Gy, are the normal and shear stresses in the master element in the coordinate system
for the equivalent crack. The equivalent crack is defined by the straight line connecting the two
crack tips of the curved crack. a is the half length of the equivalent crack.

The user can choose from one of the following methods to perform the fracture analysis. They
are 1) 2D distributed-dislocation-based finite element alternating method (DFEAM); ii) using user
supplied beta factors. In practice, one can use the 2D DFEAM to calculate the beta factor; then,
use the beta factor in the subsequent analyses.

2.2.6 2D through wall curved cracks emanating from a hole

In this damage model [see Fig. 2.6], one (or two) curved crack(s) emanates from a hole at the
center of a panel. The crack is defined piecewise-linearly by a number of points on the crack.
When the dimension of the panel is not explicitly specified by the user, the damage tolerance
module will calculate the dimension based on the size of the master element. A square panel will
be generated with an area equal to that of the master element. The loading condition is taken from
the corresponding master element. A 2D plane stress analysis is performed. The beta factors for
mode I and mode II SIFs are defined as:

B, = K K

oyvma’ Po = Cxy\/Ta

where Gy and Gy, are the normal and shear stresses in the master element in the coordinate system
for the equivalent crack. The equivalent crack is defined by the straight line connecting the two
crack tips of the curved crack. a is the half length of the equivalent crack.

The user can choose from one of the following methods to perform the fracture analysis. They
are 1) 2D distributed-dislocation-based finite element alternating method (DFEAM); ii) using user
supplied beta factors. In practice, one can use the 2D DFEAM to calculate the beta factor; then,
use the beta factor in the subsequent analyses.
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Figure 2.7: A lead crack in a stiffened panel with/without a broken central stiffener

2.2.7 Discrete source damage

In this damage model [see Fig. 2.7], one crack is located at the center of a stiffened panel. It can
be a pressurized curved panel or a flat panel. The crack is either parallel to the frame or to the
stringer. The user can specify whether the center stiffener, passing across the crack, is broken or
not. The user must specify the panel size so that a global damage tolerance model can be analyzed
to capture the load flow in the panel due to the crack. The loading condition for the global damage
tolerance model is obtained from the master element. The automatic global-local analyzer extracts
a local model with boundary conditions obtained from the analysis of the global damage tolerance
model. A local analysis based on FEAM is performed to obtain the stress intensity factors. The
beta factors for mode I and mode II SIFs are defined as:

B = K; B, = K
' oy/ma’ 27 Gy/ma

where 0y and Oy, are the normal and shear stresses in the master element in the crack coordinate

system.
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Figure 2.8: Buckling of a composite panel with elliptical/circular delamination

2.2.8 BUCKDEL

In this damage model [see Fig. 2.8], an elliptical/circular delamination is located at the center of a
panel. When the dimension of the panel is not explicitly specified by the user, the damage tolerance
module will calculate the dimensions based on the size of the master element. A square panel will
be generated with an area equal to that of the master element. A coordinate transformation is
performed by the damage tolerance module so that the major axis of the delamination is in the
x-axis direction as seen in Fig. 2.8. The loading condition is taken from the corresponding master
element. The buckling load of the panel is computed using the BUCKDEL module.

2.3 Automated global-local analyzer

The damage tolerance analysis of discrete source damage in aging aircraft poses many significant
technological challenges. As fracture mechanics treats essentially local phenomena, very detailed
modeling of aircraft structures is necessary to analyze discrete source damage. Not only local
features (such as fasteners), but also global features (such as stiffeners and joint configurations)
must be considered. The fact that an aircraft structure at the global level is a built-up structure
assembled from a large number of parts complicates the analysis.

The traditional approach to this problem is to utilize a very large number of elements for em-
bedded local details with aggressive mesh refinement in a coarser global model. The problem is
then solved in a single analysis. This approach takes many hours of a very powerful computer
to calculate reasonably accurate results using a modern workstation even in the case of a single
linear elastic analysis. A parametric survey or design optimization can only be achieved with a
supercomputer. In addition, it is very tedious and time consuming to create a finite element mesh
with these global and local features in a single model. This makes parametric study and design
optimization, which require drastic modification of the mesh, virtually impossible.

Generally, a multi-stage hierarchical approach is a more efficient method for such analyses.
However, the inherent complexity of hierarchical analysis and the absence of conventional pre-
and post- processors which directly support hierarchical analyses, made this approach impractical
until recently. There are several inherent complexities in hierarchical analysis. The first is the
simplification of the structure at each coarse stage. The second is the extraction of a subregion

14



for each detailed analysis. The third is the transfer of boundary conditions, i.e., the conversion
from the analysis result in the previous coarse stage to the boundary of the subregion in the next
detailed stage. It is obvious that sophisticated support of pre- and post-processing is necessary to
circumvent these difficulties.

The automated global-local analyzer is based on feature modeling technology, which has been
recently adopted in the field of CAD. Rather than dealing with a finite element model directly at
each stage, it deals with a feature model — a high level geometry model. After the feature model and
associated analysis conditions are defined, an arbitrary number of stages of hierarchical analyses
(including simplification, subregion extraction and boundary condition transfer) can be performed
fully automatically. Because the feature model is parametric and defined by several key design
parameters, a parametric study can be performed by simply changing the values of these design
parameters.

2.3.1 Hierarchical analysis methodology

An automated global-local analysis methodology is used for the analysis of a stiffened structure
with discrete source damage.! Since the size of the discrete source damage is usually in the same
scale as a stiffened panel, it is necessary to model the stiffeners as well as the skin in the damage
tolerance model. To reduce computational cost a global-local analysis methodology is used. In
the global model cracks are modeled via unconnected nodes at the crack locations. This crude
representation of the crack in the global model reflects the loss of stiffness in the structure, so that
the redistribution of loads among the skin, stringers and ribs can be captured. Broken stringers
and ribs, if any, are also accounted for in a similar manner. The details of the crack tip fields
are ignored at this level of analysis. The global analysis results are used to construct a free-body
diagram (Fig. 2.11) of the cracked sheet (local model), with the applied loading on the sheet being
the reaction forces from stringers and ribs as well as the loading on the periphery of the sheet. The
local model is analyzed by the damage tolerance module using a finite element alternating method;
while the global model is analyzed by the existing ASTROS module for static analysis.

To illustrate this methodology, consider the case of a wing containing a crack in the skin of
the lower surface [Fig. 2.9]. (Note that the methodology is general in nature and can be used for
a structure containing damage in the form of penetration holes and/or delaminations.) A coarse
finite element mesh is first used to model the global behavior of the cracked panel [Fig. 2.10]. The
boundary condition for the global DT model is obtained from the master element in the design
model using the master element approach discussed in § 2.1. The traction and/or displacement
boundary conditions to be applied to the local model are determined from the results of the global
analysis. These boundary conditions include the reaction forces, exerted by the stringers and ribs,
on the skin. The Finite Element Alternating Method (FEAM) is used in the local analysis to
determine the stress intensity factors. The FEAM allows a coarse finite element mesh to be used

! Here the global and local model refer to the damage tolerance model generated by the damage tolerance module,
as oppose to the preliminary design model used in the process of design optimization.
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Figure 2.9: A design optimization model

for the local model of the skin because the crack tip fields are captured by an analytical solution
and thus cracks need not be modeled explicitly in the mesh. The FEAM along with the other
local damage modeling methodologies to be implemented in the damage tolerance module will be
discussed in detail in later sections.

Damage in the form of delaminations typically need not be accounted for in the global model.
On the other hand, damage in the form of cracks or penetration holes does need to be accounted
for if it is of sufficient size to affect the load transfer in the structure.

In the global analysis, the stringers are modeled as beams (ASTROS CBAR elements) attached
to the skin (ASTROS CQUADA4), and ribs are modeled as plates (ASTROS CQUAD4). To account
for fastener flexibility, beam elements are used to model rivet connections between stiffening el-
ements and the skin. The global model is automatically generated by the integrated geometry
modeler and mesh generator in the damage tolerance module. Most details about the automated
global-local analyzer are presented in the rest of this section.

2.3.2 Geometry Modeling and Mesh Generation

This section describes the most important ingredient of the automatic global-local analyzer: the
integrated GEOmetry modeler and MESH generator (GEOMESH). GEOMESH generates the
global damage tolerance model, using the user specified geometry parameters for the discrete
source damage and the loading condition in the corresponding master element from the prelim-
inary design model. It invokes a separate ASTROS process to perform the global analysis. After
the global analysis, it 1) imports the global analysis results; 2) determines the area for local analy-
sis; 3) extracts a detailed boundary condition for the local model (see the free body loading diagram
in Fig. 2.11). A summary of how GEOMESH works follows.
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Figure 2.11: The Isolated Skin (Local Model)
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1. For each analysis, GEOMESH generates a detailed CAD model representing the entire struc-
ture according to the user supplied design parameters.

2. GEOMESH then converts the CAD model into a simplified version of the CAD model. The
simplified CAD model has the appropriate level of detail for the current analysis. When an
intermediate analysis is necessary, it can also convert global analysis results to the boundary
conditions for the intermediate stage. CAD models contain not only geometry information
but also the information required for the finite element analysis. These parameters (such as
material properties, structural dimensions, body forces and boundary conditions) are associ-
ated with geometric entities such as vertices, edges and faces.

3. Finally, a mesh and the associated boundary conditions are generated from the simplified
version of the CAD model.

To obtain boundary conditions for the local (or intermediate if necessary) analysis from results
of the global analysis, GEOMESH utilizes its post-processing functionalities that extract analysis
results at any location in the CAD model. Displacements or stresses can be obtained at any point
in the model using a finite element interpolation scheme.

Geometry-Based Analysis

Geometry-based analysis is a relatively new concept in the finite element analysis field. It allows
a user to interact with a geometry model to perform analysis rather than to manipulate a mesh
directly. This is a mesh-invisible approach wherein the mesh is hidden from the user. A geometry
model is defined by a few geometrical parameters. Associated analysis conditions, such as material
properties and boundary conditions, are attached to the geometry model. The analysis result can
be evaluated at an arbitrary location or region of the geometry model, independent of the elements
and the nodes that are hidden behind the geometry model.

A typical geometry model in an engineering field, especially the aircraft industry, can be de-
fined using a small number of dimensional and topological parameters. Once the geometry is
parameterized, parametric study can be easily performed.

At first glance, geometry-based analysis seems to have nothing to do with hierarchical anal-
ysis. However, subregion definition and simplification are highly problem-dependent in a typical
hierarchical analysis. They change frequently or even dynamically in run time during a parametric
study. If the user has to directly create and manipulate a finite element model, the mesh genera-
tion and boundary condition transfer becomes extremely complex and time consuming. For this
reason, hierarchical analysis based on traditional pre- and post-processors, which require the user
to manipulate the mesh directly, is largely impractical for parametric study or design optimization.
Geometry-based analysis makes this approach practical.

Automatic mesh generation and physical quantity evaluation techniques are enabling technolo-
gies for geometry-based analysis techniques. The technologies implemented in GEOMESH are
described herein.
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Geometry Model

A geometry model is composed of topological data and geometrical data. Topological data repre-
sents the relationship between topological entities such as the vertex, edge and face. Geometrical
data defines the shape of topological entities using a geometrical entity such as a surface, polygon,
line and curve. A simplified form of boundary representation (B-rep) is used for the topological
data of a geometry model. Because of its generality, the boundary representation has been recently
adopted in a broad range of applications in CAD/CAM/CAE industries.

A geometry entity defines the shape of a topological entity. The straight line and flat polygon
are implemented as the primitive geometry entities. The shape of each loop is defined by a cor-
responding flat polygon. The mapping from a flat surface to a cylindrical surface is used for the
modeling of a curved panel. '

Mesh Generation

GEOMESH can automatically generate meshes consisting of 3-D beam and shell elements using
a mapped mesh approach. The mapped mesh generation consists of two steps: i) generation of
super-elements for a geometry model; and ii) decomposition of these super-elements into finite
elements. This approach generates a minimum number of high quality quadrilateral elements for a
relatively regular geometry (which is typical in a aircraft structure).

In the current implementation, super-elements can be generated automatically only if the ge-
ometry model is composed of faces which are flat and parallel to the XY, YZ or ZX planes, and
edges which are straight and parallel to the X, Y or Z axis. This is one of the major limitations in
the current implementation. It will be addressed in the future.

Mapped Mesh Approach In the mapped mesh approach adopted in GEOMESH, each face of
a geometry model is divided into super-elements. The shape of the super-elements is quadrilat-
eral. A number of divisions is specified in each division direction. If the numbers of divisions
are inconsistent among adjacent super-elements, quadrilateral elements generated from the map-
ping become inconsistent too. If a crack is located between adjacent super-elements, 2 nodes are
generated at the same position for the formation of unconnected elements.

Automatic Super-element Generation GEOMESH can automatically generate super-elements
when a geometry model is orthogonal. (i.e the model is composed of faces, which are flat and par-
allel to the XY, YZ or ZX planes, and edges, which are straight and parallel to the X, Y or Z axis.)
Since the global damage tolerance model satisfies this condition, the super-element generation is
fully automated.

An algorithm is implemented to create a 3-D orthogonal non-uniformly spaced grid for each
part, so that each vertex of the part is placed on one of the grid points. Each face is then classified as
to whether the face is parallel to the XY, YZ or ZX plane, and a 2-D cut plane which is coincident to
the face is identified from the 3-D grid. The 2-D cut plane is a collection of rectangles. Rectangular
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super-elements which are contained within the face are collected from the rectangles of the 2-D
cut planes. Because all the super elements generated by the algorithms are rectangles, it is easy to
define the number of divisions. If an average element size is specified, the AGILE mesh generator
calculates the number of divisions for all the super elements. Then, it automatically generates shell
and beam elements.

Evaluation of Analysis Result

GEOMESH can evaluate analysis results at an arbitrary location independent of the locations of
the nodes and elements, as if the analysis results were mapped on the geometry model rather than
at each node or at each element integration point. The displacements of the beams are represented
using free-form curves; and the displacements of the shells are represented using free-form sur-
faces.

A physical quantity at a given point is evaluated through : i) searching for the element that
contains the given point; ii) calculating the local co-ordinate of this point in this element ; iii)
calculating the value of the physical quantity by interpolation either from values at the nodes or at
the element integration points using standard finite element interpolation techniques.

Note that this algorithm does not work if an evaluation point is coincident with the location of
a crack, because it is ambiguous which side of the crack is chosen. Therefore, the evaluation point
has to be placed a small distance apart from the crack. '

Displacement Displacements are imported at each node in a finite element model. The displace-
ments have 6 components, which consists of 3 translation components, u,, uy and u,, and 3 rotation
components, Oy, 6, and 6,. The distribution of the displacement is assumed to be linear over a 4
node quadrilateral shell element.

Stress In-plane element stress is imported at each integration point of each shell element. The
local co-ordinate system of the element is used. the in-plane stress has 3 components, Oyy, Oyy and
Gyy. The in-plane element stress is redistributed at each node to form an extrapolated nodal stress,
so that the distribution of stress is smooth. Currently, this is implemented in the st order 4 node
quadrilateral shell element. This element has one integration point at the center of the element.
Therefore, the distribution of in-plane element stress is constant over the element. However, the
distribution of extrapolated nodal stress is linear over the element.

Reaction Force GEOMESH uses beam elements to model stiffeners, rivets or rigid connections.
A rivet force may be needed at the point where a rivet is directly connected to a skin to form free
body diagrams.

A reaction force is calculated from the corresponding beam elements. For each beam element,
a shear force is calculated from the displacements of the 2 nodes of the beam element.
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2.3.3 Analysis Model and Feature Modeling

An analysis model is a geometry model with associated attributes relevant to a finite element anal-
ysis. Known as a Product Model? in the CAD industry, it is an intelligent CAD model with infor-
mation and knowledge about the finite element analysis. An analysis model is a product model for
the finite element analysis. It is the primary modular interface for the finite element analysis.

In general, the user can create an analysis model; interact with it; attach analysis conditions to
it; and visualize analysis results on it. Because it is completely hidden behind the geometry model,
the mesh is invisible from the user.

A feature model is a high level geometry model with built-in information of model simplifica-
tion. It consists of a history list of geometry definition commands. Each command is an operation
such as extrusion, fillet, cut-out, or so. A geometry model of a specified level of detail can be
constructed from its command history list.

A feature-based model knows how to analyze itself and how to perform model simplification
if necessary. It can generate an analysis model. It also knows how to transfer boundary conditions
between analysis models of different levels of details.

The part and connection are the building blocks of a feature model. A feature model consists
of parts and connections. A connection joins two parts to each other. Each part and connection
contains a command history list to generate a geometry model of the most detailed level. By
specifying the level of detail on each part connection, the feature model can produce a geometry
model that is simplified to the given level of detail.

Part Two types of parts for feature models are implemented. They are: beam-like narrow parts
and shell-like thin parts.

1. Beam-like narrow parts can produce a wire frame model of a beam structure or a surface
model of a shell structure. The knowledge to transfer boundary conditions between two wire
frame models, a wire frame model and a surface model, or two surface models has been
implemented.

2. Shell-like thin parts can produce a surface model of shell structure. The knowledges to
transfer boundary conditions between two surface models are implemented.

Connection Three types of connections are implemented. They are: riveted line, riveted area,
and rigid connection. In a riveted line, parts are connected by equally spaced rivets. In a riveted
area, parts are connected by a rectangular grid of rivets. The rectangle is perpendicular to the
direction of the rivets.

2 A product model is a CAD geometry model which contains application-specific information and intelligence to
perform application-specific tasks.
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2.3.4 Hierarchical Analysis Based on Feature Modeling

In an automated hierarchical analysis, only a single detailed feature model is required. The hi-
erarchical analyzer automatically constructs the analysis models for each level of analysis with
corresponding geometrical details and coverage. Thus, four major tasks are performed by the
automated hierarchical analyzer. They are i) the simplification of geometry; ii) the extraction of
subregions; iii) the evaluation of the analysis results in the current analysis; and iv) the construction
of boundary conditions for the analysis in the next stage. These tasks are described in this section.

Simplification of Geometry

Simplification of geometry is necessary to reduce the number of D.O.F. required to construct a
finite element model for a given feature model. The D.O.F!s saved by simplifying unnecessary
details can be allocated to the regions where mesh refinement can significantly affect the accuracy
of the finite element analysis, such as the vicinity of a crack tip.

In general, simplification of geometry is the process of elimination of small scale dimensional
parameters in the feature model. Small features can be eliminated without significant degradation
in accuracy (except in the vicinity of the eliminated feature). For example, in case of an aircraft
fuselage, dimensional parameters such as the radius of rivet holes in the skin, the size of MSD
cracks, a joggle depth of stringers at the junction with tear straps, and the radius of fillets of a
finger doubler can be ignored in a typical intermediate level model.

Narrow structures can be simplified as beams. If all the stiffeners are modeled as beams in
a global model, the dimensional parameters in the same order or less than that of the width (or
height) of the stiffeners are ignored from the feature model. The information is used to generate
the geometrical properties of the beams.

The rivet distribution pattern heavily affects the number of D.O.F. required to model a finite
element model. To reduce the number of D.O.F, rivet spacing can be artificially enlarged. At the
same time, the geometrical property parameters of the rivets have to be modified accordingly.

Model simplification methods that have been implemented are 1) modeling stiffeners as beams;
i1) elimination of small features; iii) modeling rivets as beams; iv) simplification of rivet distribu-
tions; v) using rigid connections.

Stiffener Modeled as a Beam A narrow structure is defined by an extrusion operation in CAD
geometry modeling. First, a geometry model of a cross-section is defined. Then, it is extruded
along a path which defines the shape of the narrow structure. A solid model is generated from the
extrusion of a surface; a surface model is generated from the extrusion of a wire frame; and a wire
frame is generated from the extrusion of a point.

A stiffener is the extrusion of a section along a given path. It can be modeled as a 3D solid
with a solid model, or as a shell structure with a surface model, or as a frame with a wire frame
model. In order to simplify the stiffener as a shell structure, the thickness parameter is degenerated
into a geometrical property of a surface model. In order to simplify the stiffener as a frame, the
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cross-sectional parameter is degenerated into a geometrical property of a wire model. A feature
model of the stiffener is implemented so that the automatic hierarchical analyzer can perform
these model simplifications. Automatic mesh generators have been implemented to generate shell
models and/or beam models. Since no solid mesh generator is implemented, no 3D solid model
can be generated.

A wire frame model is used for a stiffener in a aircraft structure in a global analysis. It is
discretized using beam elements in the corresponding finite element model.

Elimination of a Small Feature The complexity of a geometry model affects significantly the
number of D.O.F. of the generated finite element model. Some of the small features can be ignored
in a early stage of a hierarchical analysis, since the detailed stress solution nearby these features is
not important. In the early stage of a hierarchical analysis, it is important to determine the accurate
boundary conditions for the analysis in the next stage. These small features have an insignificant
effect on the solution for the boundary condition; while accurate modeling of these features can
significantly increase the number of D.O.F.

Filleting, tapering, making a small hole, or offsetting are examples of such small features. Even
small curved edges can be considered as features, because the extra nodes needed to represent
the curve can lead to a significant increase in the number of D.O.F. in the finite element model
generated by the automated mesh generator.

Typically, the construction of a geometry model starts from a simple model. Smaller and
smaller features are added incrementally to it. With a record of this procedure, a simplified model
can be reproduced by a modification to the procedure.

Rivet Modeling as a Beam Beam elements are used to model the rivets. Swift's experimental
equation is used to determine the stiffness of the rivets. They are

ED?n
Kyin = —m—= 2.1
ED
K ns — 22
A+CD(1/tg +1/tp) (22

where K, is the axial direction stiffness of the rivet (psi- in), Kiyans is the transverse direction
stiffness of the rivet (psi- in), E is the Young's modulus of the rivet (psi), D is the diameter of the
rivet (in), t;1 is the thickness of sheet 1 (in), and t,; is the thickness of sheet 2 (in). A and C are the
coefficients in Swift's equation. A = 5.0, C = 0.8 for aluminum rivets; and A = 1.666, C = 0.86 for
steel rivets.

The corresponding geometrical properties for the beam elements are defined as follows.

Kaxiall

A = 2.3
£ (2.3)
I<transl3

I = 24
AL (24)
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where A is the cross sectional area (in?), I is the moment of inertia (in*), and [ is the length of beam
element of the rivet (in).

Simplification of the Rivet Distribution A feature model of a rivet connection consists of a
number of rows of rivets. These rows of rivets are distributed in a regular fashion. Multiple rivets
can be combined and modeled by a single beam element, whose stiffness is the sum of these
rivets. Multiple rows of rivets can be combined and modeled by a single row of beams. This
simplification technique artificially enlarges the rivet spacing. Therefore, the number of D.O.F. in
the finite element model can be reduced significantly. This is a very useful simplification technique
for a earlier stage analysis of a build-up structure in a hierarchical analysis. In an extreme case, all
the rivets in the feature model can be degenerated to a single beam element located at the center of
the rectangle.

Rigid Connection as a Collection of Rivets The connection between a frame and a stringer,
without a shear clip, is effectively a rigid connection. The geometrical details of such a connection
are very complicated. Such a connection is modeled as a rigid connection, using very strong beams.
The stiffness of the beam element is assigned by the program so that the beam element is so stiff
that the relative translation and rotation between the two nodes are practically zero.

Subregion Extraction

A subregion is automatically extracted for the subsequent models involved in a hierarchical anal-
ysis. A subregion can be of any shape. Typically it is rectangular. Usually, the subregion is
contained completely inside the given model, from which the extraction is performed. However,
the prescribed subregion can also intersect with the boundary of the given model. In this case,
the boundary of the given model in the prescribed subregion becomes a part of the boundary in
the extracted model. A CAD operation, intersection operation, is used to extract the geometrical
model of the subregion.

Construction of Boundary Conditions

The boundary conditions for the subsequent analysis are constructed using the analysis results
evaluated at the locations of the boundaries in the current model. Once the subregion extraction is
performed, the location of the boundaries in the current model is determined. Analysis results can
be evaluated at these locations for the calculation of the boundary conditions for the analysis in the
next stage.

The boundary conditions at the end of stiffeners are prescribed as displacement boundary con-
ditions in the subsequent models generated by the automatic hierarchical analyzer. When a wire
frame model of a stiffener is modeled in detail using a surface model in the next stage, the rotation
and the displacement at this point is used to calculate the displacement constraints of the shell
model at the end of the stiffener.
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When the hierarchical analysis transitions from a 3D shell analysis to a 2D plane stress/strain
analysis, it is necessary to perform a projection of the analysis result. For example, when a local
region of the fuselage skin is to be analyzed by a 2D plane stress/strain analyzer (such as a code
using a 2D finite element alternating method), conversion of analysis results for a 3-D shell to the
corresponding boundary condition for a 2D analysis is required. In-plane displacements in the mid-
plane are used for displacement boundary conditions; while membrane stresses in the mid-plane
are used for the construction of traction boundary conditions.

2.4 Buckling Analysis of a Composite with/without delamination

The primary damage in a structure loaded in compression which must be considered during design
is a hole (Fig. 2.12). For laminated composites, delaminations will also be of relevance. It is
to be expected [with some preliminary results that confirm these expectations being reported in
Vellaichamy, et. al (1990)] that the buckling load of a panel, with a hole, in compression will
depend on the shape and the size of the hole. The buckling load of a panel with an elliptical hole
whose major axis is aligned with the direction of compression can be expected to be lower than
that with a circular hole of the same area. Further, it is expected that for an elliptical hole of a given
area, the buckling load will decrease with an increase in the aspect ratio of the ellipse, as long as the
major axis of the ellipse is aligned with the direction of compression. In the limit as the elliptical
hole shrinks to a crack whose axis is parallel to the direction of compression, with the slightest
imperfection, the crack may propagate in mode IIf in post-buckling deformation. Such mode
III behavior would severely affect the structural integrity. BUCKDEL, as developed primarily in
Phase I of this SBIR project, can be used to compute the buckling and post-buckling response of
a stiffened structure containing damage in the form of holes and delaminations of arbitrary shape.
In addition, it computes the pointwise energy release rate around the delamination front. In future
work, the ability to treat the mode III crack problem will be added to BUCKDEL.

A brief overview of BUCKDEL is given here. For more details, see the Users and Theory
Manuals of BUCKDEL, which are parts of the final report for Phase I of this project. BUCKDEL
was developed as a stand-along program in Phase I of this project. It was connected with ASTROS
as a linear buckling analysis module in Phase II.

BUCKDEL uses a multi-domain method to model delaminations of arbitrary shape. In this
method, the delaminated shell is assumed to be assembled with three regions-(1) Undelaminate:
undelaminated zone; (2) Delaminate: thinner side of the delaminated zone and (3) Base: thicker
side of the delaminated zone. Transverse shear deformation plays an important part in the case of
composite structures, hence, it is introduced explicitly and the assumptions of the Reissner-Mindlin
theories of plate bending are used for modeling each region of the multi-domain model. Thus, for
each region, the 3-dimensional displacement field (U = {U; U, U3}) is expressed in terms of the
corresponding mid-surface displacement (u = {u; u; u3}) and rotation (6 = {8; 6, 0}) fields as,

UD (g, x3) = 0 () — 2700 (x5,) (2.5)
(i)

where xg) (ou = 1,2) are the inplane curvilinear shell coordinates and x5 is the thickness coordinate
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for the i (i = 1,2,3) shell. The structural continuity at the delamination front I is maintained by
assuming the deformation to be unique at the junction of the three shells i.e. U = U® = U
on I in accordance with the Reissner-Mindlin law of flexure (Eq. (2.5)). In other words, at the
delamination edge, the mid-surface degrees of freedom of the delaminate and the base shells are
assumed to be related to those of the undelaminated shell by,

L) = D = P
o) = g — @ (2.6)

) = W)+ on0el) )

where A9 is the distance of the midsurface of the i shell from the laminate midsurface.

Each lamina is assumed to be orthotropic, and the inplane stresses o) = {c11 022 012}(i) and
the transverse shear stresses T\ = {113 ’523}(i) are related to the linear components of the membrane
strain ) = {g;; ex, 812}(i); nonlinear components of the membrane strain vl = {vi; vy v},
flexural strain due to mid-surface rotation x() = {x11 X2 Klz}(i); flexural strain due to transverse
shear strain 5 = {11 %22 x12}?) and transverse shear strains ¥ = {y;3 723} as

Eyy Ep Eg 0 O ®

&) |Ei2 En Ex 0 0 (i)
9 €4+V)+x3(K+
{ } By By Eg 0 0 {( ) 173( X)}

0 0 O Ey Ess 2

0 0 0 Es Ess

(2.7

where the material constitutive terms Ei(;) are functions of the thickness coordinate of each shell

xgi). Generally, for a laminate with orthotropic layers, Ei(;) are assumed to be piecewise constants
over the laminate thickness.

Integrating along the thickness, the constitutive equations can be written in terms of the inplane
stress resultants N = {N;; Ny, N1, }, bending moments M = {M}; M3, M, }, and transverse shear
stress resultant Q = {Q13 O»3}, for each region of the multi-plate model as,

N)©@ A B 019 ((@E+v)©
M = |B D 0 (k+%) (2.8)
Q 0 0 G v
where
(Aw; Bu; D) = E,-(;) (x3) (1; x3; x3) dx3

4

G% = /t smsnEl.(;)(x3)dx3

4

In addition to a beam element, BUCKDEL implements a three noded triangular curved shell
element. The shell element is described in the curvilinear coordinate system x —y and the area
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coordinates are used for the field-description. Accordingly we have,

3
{xy 1} = ZL,-{x y 1} (2.9)
i=1
Inverting the above relationship, we get,
1
L= A (ainx+any+a;) (2.10)

where

it =Yj— Yk Q2 =Xp—Xj, Qi3 =XjYr— XY

1
A= 5 (%2y3 — x3y2 + X3y1 — X1y3 + X1¥2 — X9)1)

and j=2,3,1; k=3,1,2asi=1,2,3.

The inplane displacements and the transverse shear strains need to satisfy C%-continuity while
the transverse deflection needs to satisfy C!-continuity in the present formulation. The independent
field variables u, v, w, ¥y, and Yyz are expressed in terms of the nodal degrees of freedom u;, v;, w;,

Px; = ("W,y )i’ Py: = (W7x)i’ Yoz, and Tz 35,

3

{uvvewt = zLi{uv'szsz}i
i=1
3

wo= 1 (N1iwi + Noipx, + N3ipy,) (2.11)
=
where
Ni = Li+LiLj+LiLy—LL} - LI}
Ny = ay (L,?L i+ %L,-L ij> +aji (L?Lk + %L,-L ij>
N3 = ap (L,?L i+ %L,-L ij> +aj (L,?Lk + %L,-L ij> (2.12)

are the cubic polynomials for the transverse deflection.

In the above element formulations, the inter-element C0~continuity is exactly satisfied for all
the field variables. However, the inter-element C! —continuity required for the transverse deflec-
tion, in case of a shell element, is satisfied a posteriori in a weak form using the Hu-Washizu
variational principle.

BUCKDEL uses an automated method to follow the post-buckling paths of the damaged struc-
ture. Teh automated post-buckling solution involves: detection of a possible instability in the
solution and elimination of possible path-retracing; classification of the detected instabilities; and
computation of the post-through buckling solution(s). Solution instabilities are detected by moni-
toring the rank of the tangent stiffness matrix. Whenever the determinant of the tangent stiffness
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matrix changes its sign, the solution senses possible instabilities in that range of load and changes
the sign of the next load increment to avoid path-retracing. Through a cycle of iterations, the
location of instabilities are identified as the load levels for which the tangent stiffness becomes sin-
gular. The tangent stiffness is often scaled to minimize numerical errors. The identified instability
points are then classified as limit points or bifurcation points using some simple and cost-effective
rules [Huang and Atluri (1995)]. If the instability point is a limit point, the arc-length continua-
tion is enough to obtain the post-buckling solution path. However, if the instability point happens
to be a bifurcation point, the strategies described in detail in Huang and Atluri (1995) are used
to trace the appropriate post-buckling solution branch. The nonlinear fundamental state between
the two solution points # — 1 and # in the neighborhood of the bifurcation point is linearized to
obtain the asymptotic solution for obtaining an approximate critical buckling load factor. A linear
combination of the normalized eigen-vector associated with the critical buckling load factor and
its orthogonal counterpart is used to determine the initial post-buckling paths.

2.5 Finite Element Alternating Method

The Schwartz-Neumann alternating method is based on the superposition principle. The solution
on a given domain is the sum of the solutions on two other overlapping domains, with part of
the boundary conditions as unknowns. The alternating method can be viewed as the fixed point
iteration scheme used to solve these unknown boundary conditions. Based on this point of view, we
can perform a convergence study. The alternating method converges unconditionally when there
are only traction boundary conditions specified on the body. The convergence criterion for mixed
boundary value problems, where there are applied displacement boundary conditions as well as
traction boundary conditions, is discussed in the following. Compare the work done by the applied
forces in the following two cases. In the first case, arbitrary displacement conditions exist on the
surfaces of the cracks in the cracked finite body, while all the boundary conditions elsewhere are
replaced by homogeneous boundary conditions, i.e. remove all tractions and reduce all the applied
displacements to zero magnitude. In the second case, the same displacement conditions exist on the
surfaces of the cracks in the infinite domain. If the work done in the cracked finite body is always
smaller than twice the work done in the infinite domain, then the alternating method converges.
Otherwise, it does not. For most practical problems, this ratio is close to one. Thus, the alternating
method converges rapidly, as discussed in detail in the following section.

2.5.1 Superposition Principle and the Alternating Method

Consider n cracks in a body of finite size. The crack surfaces which are traction free, are de-
noted collectively as I'c. Let the boundary of the finite domain(not including the crack surface)
be T, of which the boundary with prescribed tractions #° is I';, and the boundary with prescribed
displacements u? is T',. Itis clear that ' =T, UT7.

The alternating method uses the following two simpler problems to solve the original one. The
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Figure 2.13: Superposition Principle for Finite Element Alternating Method

first one, denoted as P4y4 [shown? in Fig. 2.13(c)], is that of the same » cracks in the infinite do-
main subjected to the unknown crack surface loading T. The second one, denoted as Prgy [shown
in Fig. 2.13(b)], has the same finite geometry as in the original problem except that the cracks are
ignored. The boundary I, of Prgps has the prescribed displacement u, while the boundary I, has
the prescribed traction ¢. The prescribed displacements and tractions are different from those in
the original problem in general. Because of the absence of the cracks, the problem Prgj can be
solved much easier by the finite element method (or the boundary element method).

To solve the original problem, Pogs (shown in Fig. 2.13(a)), the crack surface loading T, the
prescribed displacement u and the traction # must be found such that the superposition of the two
alternative problems Psy4 and Prgyy yields the original one, Pogg. The detailed procedures to find
these boundary conditions are described in the following.

In the uncracked body problem Prgyy, the tractions T at the location of the cracks in the cracked
body Porg can be solved, for any given boundary loads u and ¢, using the finite element method.
Due to the linearity of the problem, the solution can be denoted as

T = K+ K't (2.13)

where K* and K' are linear operators.

3Fig. 2.13 only illustrates one crack. Many cracks may be present.

30




Similarly, the tractions #* on boundary I'; and the displacements »* on boundary I', can be
found in the infinite domain Paya for the given crack surface load T, which is the same as the
crack surface traction obtained in the Prgps. The solution can be denoted as

u® = K*T (2.14)

1 =K'T (2.15)

where K* and K’ are also linear operators. Subtract the solution for Pyy4 from the one for Prea.
The resulting solution has zero tractions at the location of the crack surfaces. To ensure that the
resulting solution has the same boundary conditions on T', the Eq. (2.16) and Eq. (2.17) must be
satisfied. .
u=u’+u’ (2.16)
t=1°+1° (2.17)

The unknown tractions T, ¢ and unknown displacement u can be solved using these equations
[Eq. (2.13) through Eq.(2.17)]. Eliminate u, u* and ¢, t* by substituting Eq. (2.16), Eq. (2.17),
Eq. (2.14) and Eq. (2.15) into Eq. (2.13) to obtain the following equation for the traction T'.

T

[1- (KE™+ K'E) | T = (K" +K't°) (2.18)

Eliminate u4, t and T to obtain the following equation for the unknown traction ¢ and unknown

displacement u.
u u’
(1~A){ : }={ " } (2.19)

K*K* K“K'
K'K* K'K'

where

A=

and [ is the identity operator.
Similarly, we can obtain the following linear system for traction ¢ and displacement u*.

(I-A)X=Y (2.20)

ué
{0}
0 TURpu Jupt 0
Y—A u _ K“K* K"K U
tO tO

K'K" K'K'

It is possible to solve these equations directly to obtain the tractions 7', ¢ and displacement u.
But this involves the evaluation of K* and K’, which requires solving the traction T at the location
of the uncracked body subjected to all different loading patterns « and . We have to solve the
uncracked body problem a larger number of times, of the same order as that of the total number of

where
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degrees of freedom of the boundary nodes, using the finite element method. Thus, it can be very
expensive to find X by solving directly the linear system (I —A)X = Y. A fixed point iteration
scheme can be used to solve this linear system. The iterative scheme can be devised as:

x (1) — Ax () i=0,1,2,...,00 (2.21)

where X(0) = {u®,1°}T. If this procedure converges, the solution is

x =Y x0
i=1

Az{g}-{m, K}

the iterative scheme Eq. (2.21) is equivalent to the following alternating scheme

Since

Uy CHONE U (2.22)

a (i+1) =
{ ’:a } :{ % }T(i) (2.23)

fori=0,1,2,...,c0. In this case, the uncracked body problem is solved only a few times, because
this fixed point iteration scheme converges quickly for practical problems. Therefore, the alternat-
ing method is much more efficient than solving the linear system directly. But it should be noticed
that it may not be necessary to use the alternating method in some cases. It can be more efficient
and accurate to solve directly when multiple crack solutions are constructed from that for a single
crack. This will be discussed in detail in a later section.

2.5.2 Convergence of the Alternating Method

First it is shown that I — A is not singular and the linear system Eq. (2.20) has a unique solution.
Suppose I — A is singular. Then, there must exist a non-zero X such that (I —A)X = 0, which means
that there exist non-zero u® and %, and therefore a non-zero 7', such that

T = K"+ K't?
u® = K“T
P =K'T

In this case the analytical solution and the finite element solution have the same displacement 12
on boundary I, and the same traction ¢ on boundary I;. Subtracting the analytical solution from
the FEM solution, we obtain the solution for the following problem. The entire boundary I is free
of external loadings as well as the crack surfaces. But, the FEM solution gives zero displacements
for the crack surfaces, while the analytical solution gives non-zero displacements for the crack
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Figure 2.14: Subtract APrg)s from P4y, to Obtain the Solution for Prgs which has Homogeneous
Boundary Condition on I'

surfaces because of the non-zero T. Thus, the resulting solution has non-zero displacements at the
crack surfaces. This is a contradiction because the cracks cannot be opened without any external
load. Consequently, I — A is not singular.

The fixed point iteration scheme Eq. (2.21) converges if all the eigenvalues of A are in the open
interval (—1,1). The scheme of Eq.(2.21) converges since the eigenvalues of A are in (—1,1)
for most problems of practical interest. The eigenvalues of A are smaller than 1. Let X3 be an
eigenvector of A corresponding to the eigenvalue A.

T = K*(uM) + K (")

il = K°T

M =K'T
The solution Pggs, shown in Fig. 2.14(a), is obtained by subtracting A times the FEM solu-
tion(Fig. 2.14(c)) from the analytical solution(Fig. 2.14(b)). Here, ¥ =0and t =0 on I' and
the crack surface loading is (1 — A)T', while the displacements at the crack surfaces are the same
as those in the analytical solution. If the work done in opening the cracks in the infinite domain
is W, the work done in opening the cracks in the finite domain(with the boundary condition u = 0

and ¢ = 0) is (1 —A)W, which is equal to the strain energy stored in the body. It must be positive.
Thus, A < 1.
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It can be shown that A, > 0 in the absence of the prescribed displacement boundary conditions.
In this case, the resulting solution from the subtraction has zero tractions at the boundary I". Apply
additional load As to the boundary I" with the crack surfaces fixed. The stress state in the body
will be the same as that in the analytical solution described above, after this additional loading is
applied. This procedure of adding load on the boundary I is exactly the same as that in the FEM
solution for the uncracked body, except that the load level is A times that in the FEM solution,
because the crack surfaces are fixed. Therefore, the work done by the additional load is positive.
Consequently, (1 -A)W < W and A > 0. So, the alternating method converges for cracks in finite
domains with arbitrary shapes and arbitrary traction boundary conditions.

In general, the eigenvalie A can be smaller than zero for mixed boundary problems. It is
greater than -1 only if (1 —A)W < 2W. Thus, the convergence criterion for the alternating method
for the general case with mixed boundary conditions can be stated as follows. The alternating
method [Eq. (2.21)] converges if the crack surface loads do less work in the finite domain, with
the homogeneous boundary condition # = 0 and ¢ = 0 on T, than twice as much as they do in the
infinite domain for any arbitrary distribution of crack surface displacements (see Fig. 2.15).

Quick convergence can be expected for most of the practical applications. For any crack sur-
face displacements, the displacements and stresses at a point decay rapidly as the point moves
away from the cracks. Thus, the work done in the finite domain with the homogeneous boundary
condition is very close to the work done in the infinite domain. This implies that the eigenvalues
of A are very small and the fixed point iteration converges rapidly. Indeed, all the mixed boundary
value problems we have solved (for both 2D and 3D problems) to date using the finite element
alternating method have converged.

2.5.3 Summary of FEAM Procedure

The alternating procedure defined in Eq. (2.21) can be translated into the following simple proce-
dure. Refer to Fig. 2.13.

1. Solve Prgp with the given load on the boundary T. Solve for the tractions, which are used
to close the cracks. Denote the solution as ST, where 1 indicates that this is the solution
for the first iteration.

SFEM. () = g 4 gteo

2. Reverse the crack surface traction obtained in the previous step and apply it as the load on

the crack surfaces and solve the Pyy4. Denote the solution as S*I‘NA.

(1) i
— SN { L; } :{ % }T“)

3. Find the tractions on the boundary I'; and the displacements on the boundary I', from the
analytical solutions obtained in the previous step. Reverse them as the load for Prgy,. Find
the crack closing tractions from the solution Sf EM,

STEM: 7O = gD 4 gt (1)
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Figure 2.15: Convergence Criterion

4. Repeat steps 2 and 3 until the residual load is small enough to be ignored.

U] i _
({5

Sf{-EiM T(i—l—l) — Kuu(i) +Ktt(i)

fori=2,3,...

The solution to the original problem is the summation of all those obtained in the alternating
procedure, i.e.

5= i; (SfEM+S?NA)

2.5.4 2D FEAM for straight cracks

The analytical solutions for a crack in an infinite body, subjected to piecewise linear crack sur-
face traction [Wang and Atluri(1996)], is used for the construction of the 2D FEAM for straight
cracks in a finite sheet. Since the Finite Element Alternating Method is based on the superposition
principle, the complicated rivet force exerted on the skin by the rivets can be easily taken into
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Figure 2.16: Superposition Principle Used in the Finite Element Alternating Method

account. Consider the local model of the isolated cracked skin [see Fig. 2.11]. The skin is being
subjected to far-field tractions, and the stiffener to reaction forces. The stress-intensity factors for
single or multiple cracks (including Widespread Fatigue Damage) in the skin can be determined in
the local analysis using the Finite Element Alternating Method (FEAM), while still using a coarse
finite element mesh. The problem in Fig. 2.11 can be solved with the FEAM depicted in Fig. 2.16,
wherein it can be seen that the problem of Fig. 2.11, can be identified with the problem labeled as
the “original problem” in Fig. 2.16.

Essentially, it is a fixed point iteration scheme which solves the superposition of the following
two problems[see Fig. 2.16].

1. the uncracked, finite-sized skin subjected to external loads (including the reaction forces
exerted by the stiffeners on the skin) and unknown external boundary loads;

2. acrack in an infinite sheet subjected to a crack surface traction

The crack surface traction in the infinite sheet cancels out the cohesive traction at the location of
the crack in the first problem; while the unknown external boundary loads in the first problem
cancel out the tractions at the same location in the second problem. Thus, the original problem,
i.e. a cracked sheet of a finite dimension subjected to reaction forces exerted by the stiffeners with
other boundary loadings, is exactly the superposition of these two problems.
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The FEAM is used to solve this superposition problem. First, reverse the cohesive tractions
at the location of the crack in the finite element model of the uncracked skin and use them as the
load acting on the crack in an infinite sheet. Then, reverse the residuals at the locations of the
far field boundries in the infinite sheet and apply them as loads acting on the boundaries of the
uncracked skin. In this way, the cohesive tractions at the location of the cracks and the residuals
at the locations of the external boundaries are corrected iteratively. This procedure converges very
fast, usually in two or three iterations. A flow chart illustrating the FEAM is shown in Fig. 2.17.

Fracture mechanics parameters can be found accurately because the near crack tip fields are
captured exactly by the analytical solutions. Coarser meshes can be used in the finite element
analysis because the cracks are not modeled explicitly. The finite element method is only used to
compute the cohesive tractions at the crack location, which has a smooth distribution. Therefore, a
very coarse mesh can be used. Fig. 2.18 shows typical finite element meshes around the crack tip,
when a) the Equivalent Domain Integral (EDI) based method is used to evaluate stress intensity
factors; or, b) the FEAM is used. In Fig. 2.18, the EDI based method also uses singular quarter-
point elements. The simplicity of the FEAM mesh relative to the EDI mesh, which must explicitly
model crack tips is apparent from this figure.

In a parametric analysis of various crack sizes, such as is necessary in fatigue calculations, the
stiffness matrix of the finite element model is decomposed only once, since the stiffness of the
uncracked structure remains the same for all crack sizes. In the other approaches, such as those
using singular/hybrid type special crack-tip finite elements or EDI methods, the cracks must be
modeled explicitly. Therefore, the global stiffness matrix must be computed and decomposed for
each crack size. Thus, the FEAM is very efficient in terms of both computational time and human
effort (i.e. mesh generation) when applied to problems such as fatigue crack growth.

Finally, it is noted that a simple superposition method can be used to construct the solution
for multiple cracks in an infinite domain, subjected to arbitrary crack surface tractions, using the
solution for a single crack in an infinite domain (see the Appendix for theoretical details). With
the solution for multiple cracks in an infinite domain, the FEAM can be used to solve problems
of multiple cracks with arbitrary crack lengths and orientations at arbitrary locations. This is
particularly useful in the treatment of Widespread Fatigue Damage (WFD).

2.5.5 3D FEAM for surface flaws and corner cracks

The analytical solution for an embedded elliptical crack in an infinite body, subjected to arbitray
crack face tractions [Vijayakumar and Atluri (1981)], is used to construct the 3D FEAM for surface
flaws and corner cracks. A 20-node second order brick element is used in the 3D FEAM module.

The finite element method is used to analyze the uncracked solid. Non-zero stresses are calcu-
lated at the location of the actual crack. These stresses must be removed in order to create a traction
free crack as in the actual problem. The infinite body with an embedded crack has a solution which
is valid for an arbitrary distribution of tractions on the crack face. The detailed steps involved in
the FEAM for a crack in a finite body are as follows.

1. Solve the uncracked finite body under the given external loads using the finite element
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Figure 2.17: Flow Chart of the Finite Element Alternating Method
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(a) (b)

Figure 2.18: The Finite Element Mesh When a) The EDI Method is Used; b) The Finite Element
Alternating Method is Used

method. The uncracked body has the same geometry as in the given problem except for
the crack. For example, when a crack emanates from a hole in a structure, the hole must still
be analyzed in the uncracked structure.

2. Using the finite element solution, the program computes the stresses at the crack location.

3. It then compares the residual stresses calculated in Step 2 with a permissible stress magni-
tude.

4. The residual stresses at the crack location as computed in Step 2 are reversed to create the
traction free crack faces as in the given problem. From this, the program determines a
polynomial form for these stresses using a “least squares fit”.

5. The analytical solution to the infinite body problem with the crack subject to the polynomial
loading calculated in Step 4 is now obtained.
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6. The stress intensity factors for the current iteration are then calculated from the analytical
solution.

7. The residual stresses on the external surfaces of the body due to the applied loads on the
crack faces, are now computed. To satisfy the given traction boundary conditions at the
external boundaries, the residual stresses on the external surfaces of the body are reversed
and this allows calculation of the equivalent nodal forces.

8. Consider the nodal forces in Step 7 as externally applied loads acting on the uncracked body.

All the steps in the iteration process are repeated until the residual stresses on the crack surface
become negligible. It has been observed that this iteration process typically takes three or four
steps. The overall stress intensity factor solution is obtained by adding the stress intensity factor
solutions for all iterations.

A recent development in the 3D FEAM during Phase II of this project is the development of a
numerical scheme for the evaluation of the analytical solution for circular or near circular cracks.
The numerical procedure developed by Nishioka and Atluri(1983) becomes numerically unstable
as the aspect ratio of the ellipse tends to 1. When the ellipse becomes a circle, this numerical
procedure is no longer valid. However, the analytical solution based on the ellipsoidal potential
[Vijayakumar and Atluri (1981)] is still valid. An alternative numerical procedure was developed
during Phase II of this project. This alternative numerical procedure is documented in this section;
while the reader is refered to Vijayakumar and Atluri (1981) and Nishioka and Atluri(1983) for
other details on the analytical solution based on the ellipsoidal potentials.

Numerical difficulties arise in the evalution of the generic elliptical integral L, defined as

u . . .
Lijm = / sn 2y nd*u nc " u du (2.25)
0

where nd u, snu, and nc u are Jacobian elliptical functions.
The numerical procedure introduced by Nishioka and Atluri(1983) uses a recursive formula
starting from the evalution of the integrals

u
,’:ﬁfo nd”udu  n=0,%1,%2,..., (2.26)

Let a be the semi-major axis; b be the semi-minor axis; and k¥’ = b/a be the aspect ratio of
the ellipse. k% = 1 — k2. It is seen that as k' — 1, k — 0. The recursive formula makes use of the
identity k2sn %u + dn2u = 1 to evaluate sn 2u for a given dn 2u. However, this formula breaks down
when k = 0, since dn?u = 1 in this case. Alternatively, we can evaluate dn %u for a given snZu.
Thus, we can start the recursive formula from the evaluation of the integrals

u
I;’n:/sn?‘”udu n=0,1,2,.., 2.27)
0

Two numerical schemes were developed to evaluate I, in Phase II of this project. One is for
the case where k is close to 1; and the other is used for small k.

40



For small k, the integral is represented in terms of a series.
u ) e .
I;’n-—-/ sn "udu:Za,-I;’;{’ n=0,1,2,...,M+2
0 i=0 '
where sin¢ = snu, and

2i— 1
H=5

k2 Xaji1= bikzai_l, ag = 1

and
o,
Is"in:/ sin”* ¢ d¢.
0

It is evaluated using the following recursive formula.

-1 €
I, = bl _5% n=0,1,2,...
where 12, = ¢ and
2n—1 . .
b, = s c,,—_-c,l_lxsmzcb, ¢y = sin¢cos .

For large k, the recursive formula is

In+1 _ qnlgn + rnls"n_l + 0y
sn
Pn

where
pn = (1+2n)k2, gn =2n(1+K%), rn=(1-2n).

(xn:an_lxsnzu, 0 =snucnudnu

F(¢)—E(9)

I.?n = F((I)), Isln = 12

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
(2.34)

(2.35)

Once I7, are evaluated, L;j, can be computed using the following scheme. First, compute

Lo = I, i=0,1,....M

Lo = LKL i=0,1,...M+1
Lio- = I,-I#'  i=01,..,M
L1y = Li10—Liji—10 i=01....M

Then, compute L; j o and L; j 1 for j=0,1,...,(M—1)

qjLijm +1iLi(j-1)m+ O
pj

Li(jr1ym=

where
pj=(1+2j)k?
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(2.37)
(2.38)
(2.39)

(2.40)

(2.41)




q; =2[(2j+m—i)+ (i~ j)k? (2.42)

ri=142(i-j—m) (2.43)
o =oj—y xnd%u (2.44)
0 = —k*sn 2y en =2y /dn u (2.45)
Here, m = 0 or m = —1. Therefore, no singular term exists.

Then, compute L;j, form =0,1,...,(M — 1 — j) using the following recursive formula.

QmLijm + rmLi,j,(m‘“l) + Obn

Lijme1) = o (2.46)
where

pm = (142m)k”? (2.47)
gm = 2[(i — j— 2m)k> + (m — )] (2.48)
= [=1+2(m+ j—i)]k? (2.49)
O = Oyt X NC U (2.50)
ocozsnziJ“lundzj‘luncu (2.51)

Singular terms exist as cnx — 0. In this case, snu = 1 and dn = /1 — k2
Jim en L) = n Zmnd - (2.52)

The recursive formula can be derived from the integration of
[sn 21y nd 2=y ne 2’"+1u] .

Note, the following recursive formula is only used for the case where j = 0, m = 0 and k is

large enough.
GiLijm + rili—1),jm + O

Liiy1),jm = o (2.53)
where
pi=[1+2(i—j—m)k? (2.54)
gi = 2[(i —m) + (i — j)K’] (2.55)
ri=1-2i (2.56)
O = 0l_1 X Sn 2y (2.57)
oy =snund® lync?m1y . (2.58)

One recent application [O'Donoghue, Atluri and Pipkins (1995)] of the FEAM was to the
analysis of fatigue cracking in the lower wing skin of the U.S. Air Force C-141B (Fig. 2.19). In
this application, the growth of corner cracks from the weep holes located in the integral risers of
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Figure 2.19: U.S. Air Force C-141B

Figure 2.20: Cut-Out Lower Wing Panel from the C-141B Showing Weep Holes
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Figure 2.21: Cross-Section of Failed Lower Wing Panel of the C-141B

the wing skin was modeled with the FEAM (Fig. 2.20 and Fig. 2.21).  Fatigue crack growth
predictions were made wherein the FEAM was used to generate stress intensity factors which
were inturn used in a Forman equation. The load spectrum used was comprised of peak-valley
pairs representing 3027 equivalent flight hours. Comparisons with limited test data showed good
correlation between the FEAM based fatigue crack growth predictions and the experimental data.

2.5.6 Distributed-Dislocation-base FEAM for curved cracks

A curved crack can be treated as a distribution of dislocations. To construct the analytical solution
for a curved crack in an infinite sheet, one can solve for the dislocation density for the curved
crack. Using a complex stress function approach, the dislocation density can be related to the
crack surface traction [Park and Atluri(1998), Chen(1993), and Cheung and Chen(1987)]. Once
the dislocation density is solved for, the stress and displacement in the infinite sheet, subjected to
the prescribed crack surface traction, can be obtained.

The formulation in Park and Atluri(1998) is used for the construction of the dislocation-based
analytical solutions for a curved crack, subjected to arbitrary crack surface tractions. Using these
solutions with the finite element solution for a sheet of finite size, a Dislocation-based FEAM is
implemented for the curved cracks in a finite sheet.

2.6 Fatigue crack growth

Fatigue Crack Growth

The problem of fatigue crack growth is of considerable practical importance when designing a
structure which satisfies the DTR. To successfully employ damage tolerance principles, an accurate
determination is required of the number of load cycles to failure in a component. These estimates
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will have a significant influence in the design and maintenance of a safe structure such as in the
scheduling of inspection intervals.

Fatigue crack growth frequently occurs when a flawed component is subject to some form of
cyclic loading. Here the crack growth is termed subcritical since, due to the cyclic loading, it takes
place at stress intensity factor levels that are less than the fracture toughness of the material. The
form of the cyclic loading is also of great importance such as whether it has constant amplitude or
has a variable amplitude. The damage tolerance module has the capability to model fatigue crack
under conditions of constant amplitude and variable amplitude loading. This capability is limited
to self similar (i.e. Mode I) crack growth.

The crack growth calculations will be performed based on stress intensity factors obtained
either by the FEAM or user supplied beta factors. For reasons of computational efficiency and
accuracy, the user can use the FEAM to update the beta factor after the crack growth exceeds a
specific amount. Fatigue crack growth is carried out using the beta factor, assuming that a small
amount of crack growth does not the effect the beta factor. When the amount of crack growth
exceeds the threshold specified by the user, the FEAM can be invoked to update the beta factor.

The FEAM has made the use of finite elements in fatigue calculations feasible. The reason
being that the global stiffness matrix of the finite element model is assembled and decomposed only
once, since the stiffness of the uncracked structure remains the same for all crack sizes. In other
finite element approaches, such as those using singular/hybrid type special crack-tip finite elements
or using EDI methods, the cracks must be modeled explicitly. Therefore, the global stiffness matrix
must be assembled and decomposed for each crack size. The assembly and decomposition of the
global stiffness matrix accounts for about 80% of the computational time required in a typical finite
element analysis. Given that the FEAM has to perform this operation only once during a fatigue
analysis, the benefits of this approach over other finite element techniques for fatigue crack growth
are readily apparent.

Load spectra, in terms of ASTROS' load cases, is provided to the damage tolerance module
by the USAGE module described in Nees (1995). Since the USAGE module defines aircraft ma-
neuvers in terms of ASTROS load cases, the load spectra at any point in the aircraft structure is
automatically determined by extracting stresses at that point from the ASTROS solution database.
Use is made of USAGE features such as repeating and blocking of data to minimize storage and/or
computational requirements of variable amplitude crack growth calculations.

Numerous studies have been conducted on the characteristics of fatigue crack growth. It has
been established that when the plastic or inelastic zone in the vicinity of the crack is small, then the
stress intensity factor is the governing parameter during crack growth [Paris and Erdogan (1963)].
In general, the crack growth rate is a function of stress intensity factor change, which is given by:

AK = Kmax — Kmin (2-59)

where K.« is the maximum stress intensity factor during the load cycle and K,,;;, is the minimum
value of the stress intensity factor. Based on the minimum and maximum loads, it is customary to

define the parameter R where:
R = Kmin/Kmax (2.60)
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An important point must be made in relation to the functional relationship between the fatigue
crack growth rate and the change in stress intensity factor. This crack growth rate function can be
partitioned into three separate regions. At low values of AK, there is very little crack growth with a
negligible crack growth rate. Therefore, it can be stated that there exists a AK below which there is
no crack growth. This quantity is referred to as the threshold stress intensity factor and is denoted
as (AK);;. At higher values of AK, crack growth takes place. It has been observed experimentally
that this curve, relating the crack growth rate, da/dN, to AK, is usually linear on a log-log plot and
this corresponds to a power law relation between da/dN and AK. This is commonly referred to as
the Paris relation and is given as [Paris, Gomez and Anderson (1961)]:

da n
N C(AK) - (2.61)
where a is the crack length and N is the number of load cycles. The quantities C and n are material
dependent constants. At higher values of AK the stress intensity factor is approaching the fracture
toughness of the material, K;. The crack growth rate will increase significantly, eventually leading
to the onset of rapid unstable crack growth.

Recognizing that several distinct phases in fatigue crack growth exist, a more general form for
the relationship between crack growth rate and stress intensity factor is expressed as:

da _ C(1—RY"(AK)"{AK — (AK)4}”
dN {(1-R)K,—AK}4

(2.62)

where m, p and q are constants that relate to the particular crack growth relation that is being used.
By assigning different values to these quantities some of the well known crack growth relations
can be recovered. For example, when m = p = g = 0, the Paris relation is obtained. The Forman
relation [Forman, Kearney and Engle (1967)], which accounts for high crack growth rates and
instability, is recovered by setting m = p=0and g = 1. By setting p=g=0and m = (My, — )n,
the Walker relation [Walker (1970)] is derived, where M,, is an exponent in the Walker relation.

With stress intensity factor solutions and a crack growth relation in hand, the ultimate objective
of fatigue crack growth calculations, to calculate the number of cycles for a crack to grow by a
specified amount, can be carried out. This is done by integrating the growth relation [Equation
(2.61) or (2.62)]. For example, the equation (2.61) is integrated as follows. Since

AK = Acv/ma
Eq. 2.61 can be rewritten as

d(l . n/z

W = C1a

where C; =C [BA\/E]n Assuming that the beta factor does not change for the small amount of
crack growth in N cycles, the amount of crack growth is

n11/(1-n/2)
Aa:ao{l—l—(l—n/Z)—C—N(a;AK)— —a, for n#2

]
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or o [M]
=aqpel % | —q, for n=2
where a, is the half crack length before the N cycles crack growth. The integration is carried out
for a specific design life to find the final crack length at the end of the end of the design life of the
aircraft. All of these steps will be carried out automatically by the damage tolerance module.
Self-similar growth of through skin cracks is straightforward to carry out using the above pro-
cedure. However, for an elliptical or part elliptical crack since the stress intensity factor distribution
is generally not constant along the elliptical crack front, the crack growth rates will not be the same
in every direction. Consequently, the shape of the crack will change. It has been often observed in
practice that a semi-elliptical surface crack, initially having a small aspect ratio, will have a larger
crack growth rate in the minor axis direction. The damage tolerance module computes the amount
of crack growth for the major and minor axis, assuming that the orientation of the major/minor
axis does not change. The situation where the minor axis grows faster than the major axis so that
it becomes the major axis after a numbers of cycles is allowed by the damage tolerance module.

2.7 Optimization

The principal objective of multi-disciplinary structural optimization is to minimize an objective
function such as structural weight and/or cost subject to discipline specific constraints (strength,
flutter, stiffness, etc.). ASTROS provides a sophisticated software framework for performing such
optimizations. ASTROS supports both preliminary design and design modifications that occur
later in the product life cycle. It combines finite element modeling and analysis techniques with
efficient optimization algorithms to deliver significant reductions in the time required to develop
superior designs of structures. The finite element modeling is based on the standard NASTRAN
bulk data format.

The preliminary design stage is where ASTROS capabilities can be used to the fullest. Typ-
ically, the aerodynamic configuration, materials and design conditions have been defined at this
stage. The preliminary design challenge is then to determine the optimal (i.e. least weight and/or
cost) structural configuration which satisfies constraints imposed by multiple engineering disci-
plines. ASTROS supports a wide variety of constraints. These include: Tsai-Wu stress crite-
ria; von-Mises stress; stiffness; natural frequency; flutter; laminate composition; panel and beam
buckling; and aeroelastic lift and control effectiveness. With the addition of the damage tolerance
module, residual strength and residual life based constraints are now part of this list. ASTROS
performs the optimization task by automatically changing design variables. The design variables
which ASTROS uses are related to properties of the finite elements used to model the structure
being optimized. The design variables are the thickness of shell elements and cross-sectional area
of beam elements. For laminates, the thickness of individual plys is the design variable. In order to
insure that the optimized structure is realistic from a manufacturing point of view ASTROS sup-
ports design variable linking. Design variable linking allows the grouping of elements for constant
thickness structure or the definition of shape functions for tapered (thickness) structure.
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The damage tolerance module evaluates the residual strength and residual life based constraints
based on damage tolerance analysis. However, automated redesign based on the damage tolerance
constraint is still not well resolved. Based on the factor that damage tolerance analysis takes a
significant amount of time, while the damage tolerance constraint is not the most important con-
straint during the preliminary design, it is suggested that the user used beta-factor based automated
redesign strategy. The details follow. The user can use the damage tolerance module to evaluate
the beta factors as correction factors for an analytical solution for a simple case. The constraint
can than be expressed explicitly in using a formula involving the beta factor. This constraint can
be defined by the user in terms of a user defined function in ASTROS. Assuming that the beta
factor does not change during the redesign, one can use the existing capability of ASTROS to per-
form automated redesign. After the redesign, the beta factor can be re-evaluated to ensure that the
damage tolerance constraint is met. This approach can significantly reduce the computational time
associated with the computation of damage tolerance constraints.

2.8 Interfacing with ASTROS

This section briefly summaries the interfacing techniques used to integrate the damage tolerance
module with ASTROS (Automated STRuctural Optimization System). More details can be found
in the Interface Design Document for this project.

ASTROS is an extendible system built on top of an engineering database and the Matrix
Analysis Problem Oriented Language (MAPOL). The database provides a channel for the inter-
module communication in ASTROS; while MAPOL provides extendibility to ASTROS. During
the integration of the damage tolerance module into ASTROS, an extremely powerful “gluing tool”
— Tool Command Language (TCL) is introduced into ASTROS.

The damage tolerance module is a complex system by itself. It includes customized mesh gen-
erators, finite element alternating [Schwartz-Neumann Alternating] codes (for 2D straight cracks,
2D curved cracks and 3D elliptical/circular cracks), an automated Global/Local analyzer, and a
buckling analyzer. They were developed using different computer languages, such as C, C++and
FORTRAN. In order to integrate the damage tolerance module into ASTROS, a TCL interpreter is
planted into ASTROS as a module invokable from a MAPOL sequence.

Fig. 2.22 shows the interfacing strategy for incorperating damage tolerance into ASTROS.
It is seen in Fig. 2.22 that the Damage Tolerance Module communicates with the other Built-in
Modules of ASTROS through the Engineering Database. The extended modules are controlled by
TCL scripts, which are interpreted by the embedded TCL interpreter. The interpreter is in turn
controlled by the modified MAPOL sequence.

Interfacing aspects, related to MAPOL, DATABASE and TCL, are documented in this chapter.
Database entities used by the damage tolerance module to communicate with other modules are
described in the Interface Design Document.
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2.8.1 MAPOL

As seen in Fig. 2.22, the MAPOL sequence does not control the damage tolerance module directly.
It interacts with the TCL module only.

A single argument (INTEGER) is passed to the TCL module from the MAPOL calling sequence.
This argument indicates the position in the MAPOL sequence, from which the MAPOL call is
placed. This status indicator is set as the value of the global TCL variable astrosStateID. De-
pending on the value of astrosStatelID, the TCL module i) creates an interpreter; ii) performs
input data check; iii) performs damage tolerance analysis; or iv) deletes the interpreter, etc. No
other direct data communication is made between the MAPOL calling sequence and the damage
tolerance module. The damage tolerance module communicates with the rest of the modules in
ASTROS, though the database entities, to get the data required for damage tolerance analyses. It
also stores the results in the database for other modules to access.

2.8.2 DATABASE

ASTROS relies on the engineering database for inter-module communication. Originally based on
the Computer Automated Design Database (CADDB), which was the heart of ASTROS during its
development, the commercially supported ASTROS is now based on the eBASE database devel-
oped by UAL In this project, the set of interface routines for CADDB are used to access database
entries. To facilitate the migration from CADDB to eBASE, the damage tolerance module uses
a set of TCL commands to access the database via the CADDB interface. To migrate from the
CADDB interface to the eBASE interface, it will be necessary to re-implement only those TCL
commands using the eBASE access routines.

283 TCL

Tool Command Language (TCL) is a simple, yet robust scripting language. It is an excellent script-
ing language for extending the functionality of existing programs. TCL was originally developed
at the University of California, Berkeley. The development was later shifted to Sun Microsystems,
Inc. Currently, it is commercially supported by Scriptics, Inc. The core system of TCL is freely
distributed with the source code. Although it is distributed without a charge, it is very stable and of
commercial quality. TCL has become an increasingly popular cross-platform scripting language.
Many commercial software have been developed based on TCL.

TCL consists of a scripting language and an interpreter for that language. TCL interpreter is
designed such that it can be easily embedded into other applications. As a language, it is much like
the UNIX shell language. There is very little syntax; and it is very easy to learn. TCL has been
used to assemble software modules that have been built in system programming languages like C,
C++ and FORTRAN. These building blocks appear as commands, or verbs, in TCL.

Online user manuals are available at Scriptics' web site (http://www.scriptics.com/man

/tcl8.0/contents.htm). Much more helpful information can be found at http://www.scriptics.

com/resource/.
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The damage tolerance module is actually a complex system. It includes customized mesh gen-
erators, finite element alternating codes [based on the Schwartz-Neumann alternating method](for
2D straight cracks, 2D curved cracks and 3D elliptical/circular cracks), an automated Global/Local
analyzer, and a buckling analyzer. They were developed using different computer languages, such
as C, C++ and FORTRAN. In order to integrate the damage tolerance module into ASTROS, a
TCL interpreter was planted into ASTROS as a module invokable from the MAPOL sequence.
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Figure 2.22: Integration of damage tolerance module with ASTROS
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CHAPTER III
SUMMARY OF PHASE II ACCOMPLISHMENTS

A summary of the Phase IT accomplishments in this SBIR project is presented in this chapter.

During Phase II, a damage tolerance module is implemented and integrated with ASTROS.
To integrate the damage tolerance module into ASTROS, the TCL (Tool Command Language)
interpreter has been implanted into ASTROS as a gluing tool.

Customized damage tolerance models have been implemented so that the user can easily per-
form these types of damage tolerance analysis with very little effort. A master element approach
has been used to minimize the impact of damage tolerance analysis on the data preparation for the
preliminary design model. With a few extra bulk data cards, the user can perform damage tolerance
analysis.

The customized damage tolerance models that have been implemented are:

e Discrete Source Damage Model: a lead crack in a stiffened panel with/without the presence
of a broken central stiffener [Fig. 2.7]

¢ BuckDel Model: buckling of a composite panel in the presence of a delamination [Fig. 2.8]

e Straight Crack Model: a panel with a centered crack [Fig. 2.1]

¢ Rivet Hole Crack model: one (or two) crack(s) emanating from one side (or both sides) of a
rivet hole [Fig. 2.2]

¢ Curved Crack model: a panel with a curved crack [Fig. 2.5]

¢ Rivet Hole Curved Crack model: one (or two) curved crack(s) emanating from one side (or
both sides) of a rivet hole [Fig. 2.6]

e Surface crack model: one centered surface crack in a plate [Fig. 2.3]

e Rivet Hole Corner Crack model: two corner cracks emanating from both side of a straight-
shank rivet hole. [Fig. 2.4]

An automated global-local analyzer was developed for the analysis of discrete source damage.
The automated global-local analyzer, based on the feature modeling technique, has an integrated
geometry modeler and mesh generator. It completely automates the model simplification, model
generation and submodel creation for a hierarchical analysis.

A 2D FEAM (Finite element alternating method), 3D FEAM, and distributed dislocation based
FEAM have been implemented in the damage tolerance module for the analyses of 2D straight
cracks, 3D surface flaws/corner crack, and 2D curved cracks. An alternative numerical scheme has
been developed to overcome the difficulties associated with the cracks of a circular shape.
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The damage tolerance module can generate a cyclic loading spectrum, based on the user defined
loading spectrum Zin terms of ASTROS loading cases). Using this cyclic loading spectrum, the
damage tolerance module can perform self-similar (Mode I) fatigue crack growth analysis.

The damage tolerance module was integrated into ASTROS v20p0 on AIX 4.2. It has been
ported on the IRIX operating system.
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